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Examining Productive Failure, Productive Success,
Unproductive Failure, and Unproductive Success in

Learning

Manu Kapur

Department of Psychological Studies

The Hong Kong Institute of Education

Learning and performance are not always commensurable. Conditions that maximize

performance in the initial learning may not maximize learning in the longer term. I exploit

this incommensurability to theoretically and empirically interrogate four possibilities for

design: productive success, productive failure, unproductive success, and unproductive

failure. Instead of only looking at extreme comparisons between discovery learning and

direct instruction, an analysis of the four design possibilities suggests a vast design space in

between the two extremes that may be more productive for learning than the extremes. I

show that even though direct instruction can be conceived as a productive success compared

to discovery learning, theoretical and empirical analyses suggests that it may well be an

unproductive success compared with examples of productive failure and productive success.

Implications for theory and the design of instruction are discussed.

Incommensurability between performance and learning lies

at the core of the argument I advance in this article. R. A.

Schmidt and Bjork’s (1992) seminal and highly influential

review of psychological research on verbal and motor learn-

ing suggested that experimental manipulations that may

hinder performance in the shorter term can actually be pro-

ductive for learning in the longer term. They advanced the

notion of introducing “desirable difficulties” during the ini-

tial learning to afford learners opportunities to engage in

processes that are germane for learning even if they result

in a performance dip. Examples of desirable difficulties

include increasing the complexity of/variability in the task,

unguided problem solving, or reducing or delaying feed-

back during the initial learning. They concluded that condi-

tions that maximize performance in the initial learning may

not necessarily be the ones that maximize learning in the

longer term. Conversely, conditions that adversely affect

performance initially may result in better learning in the

longer term.

Exploiting the incommensurability between learning and

performance results in four possibilities for design:

productive success, productive failure, unproductive suc-

cess, and unproductive failure.

First among these four design possibilities is designing

conditions that maximize performance in the shorter term

and maximize learning in the longer term. I refer to such

design efforts as productive success. Productive success

involves structuring problem-solving and learning activities

with the goal of achieving both improved performance on

problem solving and sustainable learning. For example,

constructivist approaches that fall into the genres of prob-

lem-based learning (PBL) and guided inquiry involve scaf-

folded problem-solving activities initially to engender

learning, with a gradual fading of the scaffolds as learners

gain expertise (Puntambekar & H€ubscher, 2005; H. G.

Schmidt, Loyens, Van Gog, & Paas, 2007).

Second is the possibility of designing conditions that

may not maximize performance in the shorter term but in

fact maximize learning in the longer term. I refer to such

design efforts as productive failure (Kapur, 2008). Produc-

tive failure engages students in solving problems requiring

concepts they have yet to learn, followed by consolidation

and instruction on the targeted concept. By failure, I simply

mean that students will typically not be able to generate or

discover the correct solution(s) by themselves. However, to

the extent that students are able to use their prior knowledge
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to generate suboptimal or even incorrect solutions to the

problem, the process can be productive in preparing them

to learn better from the subsequent instruction that follows

(Kapur & Bielaczyc, 2012; Schwartz & Martin, 2004).

Third is the possibility of designing conditions that

may maximize performance in the shorter term without

maximizing learning in the longer term. In other words,

there is an illusion of learning in initial high perfor-

mance. I refer to such design efforts as unproductive

success. For example, teaching methods that rely largely

on drill-and-practice or rote memorization would fall

into this category, for it is possible for students to show

high performance on memory tasks or carrying out

problem-solving procedures without a commensurable

understanding of what it is that they are doing. A classic

example comes from Miller and Gildea’s (1987) work

on vocabulary learning. They described how children

who learned the meaning and use of words mainly from

dictionary definitions are often not able transfer it

appropriately to practice. For example, even though they

may be able to state the meaning of the word correlate,

how they use the word in practice (e.g., Me and my

parents correlate, because without them I wouldn’t be

here) may be completely meaningless.

Finally, there is the possibility of designing condi-

tions that maximize neither performance nor learning in

the short or long terms. I refer to such design efforts as

unproductive failure. A well-studied example of unpro-

ductive failure is pure discovery learning, where stu-

dents are expected to learn (or discover) the targeted

concepts by engaging in solving problems without any

guidance or support whatsoever. Throughout this article,

I use “discovery learning” and “unguided problem sol-

ving” interchangeably.

The purpose of this article is to interrogate the four

design possibilities, compare and contrast them with each

other, and derive implications for the design of initial learn-

ing. I start with the obvious low-hanging fruit in unproduc-

tive failure. I use research on the ineffectiveness of pure

discovery learning to illustrate unproductive failure and

the case against it. I then turn my attention to productive

failure and productive success, and the comparison between

the two. I conclude by situating my findings in the broader

research literature, as well as deriving implications for the

long-standing instructivist-constructivist debate on the

design of learning (Kirschner, Sweller, & Clark, 2006;

Tobias & Duffy, 2009).

UNPRODUCTIVE FAILURE

There is consensus among instructivists (e.g., Kirschner,

Sweller, & Clark, 2006) and constructivists (e.g., Hmelo-

Silver, Duncan, & Chinn, 2007) that unguided problem

solving or discovery learning often leads to dismal learning

outcomes. For example, instructivists bring to bear substan-

tive empirical evidence against unguided or minimally

guided instruction to claim that there is little efficacy in

having learners solve problems that target novel concepts

and that learners should receive direct instruction on the

concepts before any problem solving (for fuller reviews,

see Kirschner, Sweller, & Clark, 2006; Mayer, 2004).

Perhaps this view is best captured by Sweller (2009):

“What can conceivably be gained by leaving the learner

to search for a solution when the search is usually very

time consuming, may result in a suboptimal solution, or

even no solution at all?” (p. 128). This view is grounded

in cognitive load theory (CLT; Sweller, 1988) and is

supported by a large body of evidence that has com-

pared some form of heavily guided direct instruction

(e.g., through well-designed worked examples) favorably

with unguided or minimally guided discovery learning.

This led Kirschner, Sweller, and Clark (2006) to argue

that “controlled experiments almost uniformly indicate

that when dealing with novel information, learners

should be explicitly shown what to do and how to do

it” (p. 79). Direct instruction typically involves the use

of instruction on the targeted concepts followed by or

coupled with the use of well-designed worked examples

to illustrate and explain the targeted concepts, before

independent problem solving (Kirschner, Sweller, &

Clark, 2006).

It is not surprising that learners do not learn as much

from unguided problem solving when compared with a

heavily guided direct instruction through worked exam-

ples. From the perspective of CLT, when students do

not have the knowledge to solve a problem, they often

search the problem space for solutions by engaging in

resource intensive processes such as trial and error or

means-ends analysis, which burden the limited working

memory capacity. Because all conscious processing hap-

pens in the working memory, working memory is less

available for learning new concepts and procedures if it

is mainly occupied with such a search of the problem

space (Kirschner, Sweller, & Clark, 2006; Tuovinen &

Sweller, 1999). By showing the learner exactly what to

do and how to do it, direct instruction reduces this load

on the working memory, thereby facilitating the devel-

opment of correct domain knowledge and procedures

(Klahr & Nigam, 2004; Sweller & Chandler, 1991).

Compared with unguided problem solving, where stu-

dents may not even be able to discover correct knowl-

edge and procedures on their own at all (Klahr &

Nigam, 2004), direct instruction affords students the

opportunities to attend to and acquire the correct proce-

dures and knowledge while reducing the probability of

encoding of errors and misconceptions (Sweller &

Chandler, 1991).

Theoretically and empirically, there is no doubt about

the superiority of direct instruction over unguided problem
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solving. Based on the comparison against unguided prob-

lem solving, one could even judge direct instruction as a

productive success. However, I argue to hold off on the

judgment until we have more closely interrogated the fol-

lowing fallacious inferences that usually get derived from

the comparison:

1. No conceivable benefit can be derived from unguided

problem solving.

2. Because unguided problem solving is the problem,

maximal guidance is the solution.

3. CLT is against the use of unguided problem solving

when learning something new.

I discuss each in turn.

No Conceivable Benefit Can Be Derived From
Unguided Problem Solving

That direct instruction trumps unguided problem solving

does not logically imply there is little efficacy in having

learners solve problems that target concepts they have not

learned yet. To determine if there such an efficacy, a stricter

comparison is needed in which one compares direct instruc-

tion with an approach where students first engage in

unguided problem solving on their own, followed by appro-

priate instruction.

I use Klahr and Nigam’s (2004) study as a case in point

because it is often cited as a stellar example of the effec-

tiveness of direct instruction over discovery learning. Klahr

and Nigam first conducted a baseline assessment to see if

students knew the control of variables strategy (CVS) prin-

ciple by getting them to design experiments on their own.

The success rate on the baseline assessment was expectedly

very low. Students who were subsequently assigned to the

discovery learning condition simply continued to design

these experiments without any instruction on CVS or any

feedback. However, for students in the direct instruction

condition, the instructor modeled and contrasted the design

of both confounded and unconfounded experiments with

appropriate instructional facilitation and explanation to

make them attend to critical features of why CVS helps iso-

late the effects of a factor whereas confounded experiments

do not.

It is unsurprising that direct instruction was found to be

more effective than discovery learning on posttest meas-

ures. However, one can also argue that the baseline assess-

ment in Klahr and Nigam’s (2004) study seems to function

very much like a discovery learning phase where students

generated their own solutions (in this case, experiments) to

solve a problem that targets a concept (in this case, CVS)

they had not learned yet. If so, the very effects that Klahr

and Nigam attribute to direct instruction alone seem more

appropriately attributed to a pure discovery learning phase

(their baseline assessment) followed by direct instruction.

Therefore, much as Klahr and Nigam set out to show that

there is little efficacy in students exploring and solving

problems requiring concepts they have not learned yet, their

findings can be reinterpreted to support precisely the oppos-

ing contention that such discovery learning can in fact be

efficacious provided some form of instruction that build

upon it follows.

Because Unguided Problem Solving Is the Problem,
Maximal Guidance Is the Solution

The superiority of direct instruction over unguided prob-

lem solving does not mean that a rejection of one

extreme (no guidance at all) implies an automatic adop-

tion of the other (heavy or maximal guidance) as the

most effective solution. Perhaps there exist other ways

of designing guidance in the initial learning that are just

as or even more effective than the maximally guided

direct instruction.

In a strong critique of discovery learning, Mayer (2004)

reviewed studies that compared unguided discovery with

guided discovery and direct instruction. Although the

review clearly showed that unguided discovery was the

least effective, it also showed that direct instruction was not

the most effective, and that it was in fact guided discovery

that outperformed both unguided discovery and direct

instruction. For example, Kittel (1957) compared learning

of logic problems (e.g., finding the rule for excluding a

word from a group of words) through pure discovery,

guided discovery (where a hint was given), and direct

instruction (where the rule was told first), and Kittel found

guided discovery to be the best for retention and transfer.

Gagne and Brown’s (1961) study echoed similar findings in

the learning of math where students had to learn how to

derive formulas to sum a number series. There are other

methods, too, such as PBL, the effectiveness of which over

direct instruction has been demonstrated, though these

effects are not always consistent (e.g., see Hmelo-Silver,

Duncan, & Chinn, 2007). Research on productive failure

(Kapur, 2008, 2010, 2014) and preparation for future learn-

ing (Schwartz & Bransford, 1998; Schwartz & Martin,

2004) also represent teaching methods that are more effec-

tive than direct instruction.

The point is simple: Just because a complete lack of

guidance (in unguided problem solving) is the problem

does not logically mean that maximal provision of guid-

ance is the most effective solution; one does not have to

swing from one extreme to the other. It is possible to

design teaching methods that are better than both

completely unguided problem solving and heavily

guided direct instruction. If so, direct instruction may

come across as an example of a productive success

when compared with discovery learning, but that may

not hold true when compared with other designs. I take

this up later in the article.
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CLT Is Against the Use of Unguided Problem Solving
When Learning Something New

According to CLT, the processing of novel information

depends upon an interaction between a limited working

memory capacity and relevant information stored in the

long-term memory. Kirschner, Sweller, and Clark (2006)

argued that “any instructional theory that ignores the limits

of working memory when dealing with novel information

or ignores the disappearance of those limits when dealing

with familiar information is unlikely to be effective”

(p. 77).

If what a learner already knows—prior knowledge—

about a concept is a critical determinant of either limit-

ing or expanding the working memory capacity as con-

ceptualized by CLT, then a commitment to CLT entails

a commitment to understanding whether and the extent

to which the targeted concept is novel to the learner. If

one assumes that learners do not have any prior knowl-

edge of the targeted concept, one is constrained to work

within the limiting aspects of the working memory,

which is what the proponents of direct instruction

largely seem to have done (e.g., Carroll, 1994; Paas,

1992; Sweller & Chandler, 1991).

Note that there are CLT studies that take into account

learners’ prior knowledge. For example, Kalyuga, Chan-

dler, Sweller, and Tuovinen (2001) found that the learn-

ing with worked examples benefited learners initially

when they had low or no domain knowledge. As their

domain knowledge increased, the effectiveness of

worked examples over unguided problem solving disap-

peared. However, these studies maintain the recommen-

dation that one should use direct instruction to build

initial expertise, and only with the build-up domain

expertise that the use of worked examples be diminished

or removed in favor of unguided problem solving.

In contrast, the possibility of using unguided problem

solving for learners with initially no formal knowledge of

the concept has not been explored within CLT. For such

learners, could we not design problem-solving tasks that

can activate and elicit their prior knowledge, albeit subopti-

mal or even incorrect, about a concept even if they have not

formally learned it yet? To the extent that we can accom-

plish this, it follows that by activating and working with

these priors in the long-term memory, one can leverage the

expandable aspects of the working memory capacity. At

the very least, this is a theoretical possibility that CLT

allows for, yet it remains underresearched. It seems that the

proponents of CLT, by assuming learners have no prior

knowledge, have theoretically underdetermined the design

implications of CLT.

Against the backdrop of the three fallacious inferences, I

now turn to demonstrating a case for productive failure. I

show that it is possible to design problem-solving activities

for eliciting students’ prior knowledge through unguided

problem-solving initially, and that there can be an efficacy

of such unguided problem solving provided an appropriate

guidance in the form of consolidation and instruction subse-

quently follows.

PRODUCTIVE FAILURE

Productive failure involves two phases: a problem-solving

phase followed by a consolidation (or instruction) phase

(for a fuller description of the design, see Kapur &

Bielaczyc, 2012). The problem-solving phase affords

opportunities for students to generate and explore the affor-

dances and constraints of multiple solutions to novel, com-

plex problems. The consolidation phase affords

opportunities for comparing and contrasting, organizing,

and assembling the relevant student-generated solutions

into canonical solutions.

There is now a growing body of evidence that generating

solutions to novel problems prior to instruction can help

students learn better from the instruction (Kapur &

Rummel, 2012). Evidence comes not only from quasi-

experimental studies conducted in the real ecologies of

classrooms (e.g., Kapur, 2012, 2013; Kapur & Bielaczyc,

2011; Schwartz & Bransford, 1998; Schwartz & Martin,

2004) but also from controlled experimental studies (e.g.,

DeCaro & Rittle-Johnson, 2012; Kapur, 2014; Loibl &

Rummel, 2013, 2014; Roll, Aleven, & Koedinger, 2011; R.

A. Schmidt & Bjork, 1992; Schwartz, Chase, Oppezzo, &

Chin, 2011).

For example, in a study with eight-grade students,

Schwartz and colleagues (2011) compared students who

invented solutions with contrasting cases before receiving

instruction on the concept of density with those who were

instructed first and then practiced with the same cases.

They found that although there was no effect on procedural

knowledge, invention activities prepared students to learn

the deep structure of density better, which resulted in better

transfer than those who received instruction first. Likewise,

DeCaro and Rittle-Johnson (2012) had second- to fourth-

grade students solve unfamiliar math problems on number

sentences before or after receiving instruction on number

sentences. Once again, there was no difference on proce-

dural knowledge, but students who solved problems first

developed better conceptual understanding than those who

first received instruction. More recently, in a randomized-

controlled experiment with ninth-graders learning the con-

cept of standard deviation, Kapur (2014) had students indi-

vidually generate solutions to a novel problem before or

after receiving instruction. He too found no difference on

procedural knowledge, but students who engaged in prob-

lem solving prior to instruction demonstrated significantly

better performance on conceptual understanding and trans-

fer than those who engaged in problem solving after

instruction.
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There are several interdependent mechanisms under-

pinning the preparatory effects of problem solving prior

to instruction. First, starting with problem solving may

be better at activating and differentiating relevant prior

knowledge provided students are able to use their priors

to generate suboptimal or even incorrect solutions to the

problem (DeCaro & Rittle-Johnson, 2012; Schwartz,

Chase, Oppezzo, & Chin, 2011; Siegler, 1994). Because

students can rely only on their prior knowledge to gen-

erate solutions, the nature of these solutions provides a

measure of the types of knowledge that was activated

and how this knowledge is relevant in relation to the

targeted concept (Kapur, 2014; Loibl & Rummel, 2014;

Westermann & Rummel, 2012). Second, prior knowl-

edge activation may in turn afford more opportunities

for students to (a) notice the inconsistencies in and real-

ize the limits of their prior knowledge (DeCaro & Rit-

tle-Johnson, 2012; Loibl & Rummel, 2014; Ohlsson,

1996) and (b) compare and contrast student-generated

solutions and correct solutions during subsequent

instruction, thereby helping students’ to attend to and

better encode critical features of the new concept

(Kapur, 2014; Schwartz, Chase, Oppezzo, & Chin,

2011). Finally, besides the cognitive benefits, problem

solving prior to instruction may also have affective ben-

efits of greater learner agency, as well as engagement

and motivation to learn the targeted concept (Belenky &

Nokes-Malach, 2012; Clifford, 1984; Hiebert & Grouws,

2007).

These studies provide robust evidence that there is an

efficacy of unguided problem solving, but only if some

form of consolidation and instruction follows. Note

also that the greater efficacy of productive failure over

direct instruction lies not in the development of proce-

dural knowledge but in conceptual knowledge and

transfer.

A synthesis across several productive failure studies sug-

gests key design features for its benefits to be realized: (a)

The initial problem-solving task should be challenging

enough to engage the learner in the exploration, but not so

challenging that the learner gives up; (b) it must admit mul-

tiple solutions, strategies, and representations, that is, afford

sufficient problem and solution spaces for exploration; (c)

the problem should activate learner’s prior knowledge—

formal as well as intuitive—to solve the problem; and (d) a

teacher or an expert should build upon the student-gener-

ated solutions by comparing and contrasting them with the

correct solution, thereby directing attention to and aiding

encoding of the critical features of the targeted concept.

When designing for productive failure in the real ecologies

of classroom, it further helps if appropriate disciplinary

norms and expectations for problem solving and learning

are set and reinforced (for a fuller explication of design

principles of productive failure, see Kapur & Bielaczyc,

2012).

Next I turn to more evidence, this time from produc-

tive success that can result in better learning than direct

instruction. Unlike productive failure, where students do

not necessarily generate or learn the correct solutions in

the initial problem-solving phase, productive success

guides the initial problem-solving process in ways that

leads to both successful problem solving and learning.

PRODUCTIVE SUCCESS

The difference between productive failure and productive

success is a subtle but an important one. The goal for pro-

ductive failure is a preparation for learning from subsequent

instruction. Thus, it does not matter if students do not

achieve successful problem-solving performance initially.

In contrast, the goal for productive success is to learn

through a successful problem-solving activity itself.

Because students do not know the concepts to solve these

problems, the problem-solving process, unlike in produc-

tive failure, is heavily guided to achieve both problem-solv-

ing success and learning (Hmelo-Silver, Duncan, & Chinn,

2007).

An established and well-researched example of produc-

tive success is PBL. PBL, as the name suggests, situates

student learning in collaborative and authentic problem-

solving tasks and activities. Through PBL, students learn

the targeted domain knowledge, as well as collaboration,

communication, and reflection skills (Hmelo-Silver,

Duncan, & Chinn, 2007). PBL is supported by a range of

scaffolds distributed across the materials; technological

tools; and, most important, teachers and domain experts

(Puntambekar & Kolodner, 2005). Teachers model behav-

ior, guide student problem solving by asking questions, and

directing attention to critical features to help the learner

achieve what he or she would not be able to without the

scaffolds and guidance. The intended result is both success-

ful problem solving and learning.

PBL has been subject to numerous comparisons with tra-

ditional direct instruction. Meta-analytic studies, however,

provide mixed evidence (e.g., Albanese & Mitchell, 1993;

Vernon & Blake, 1993). For example, Vernon and Blake

(1993) found that whereas traditional direct instruction was

better for the acquisition of basic medical knowledge, PBL

instruction was better in transferring that knowledge to

solve problems in clinical practice. Dochy, Segers, Van den

Bossche, and Gijbels (2003) meta-analysis found not only

that PBL students performed better on knowledge applica-

tion but also that the advantage of direct instruction over

PBL on basic knowledge acquisition vanished after the 2nd

year of medical school. Gijbels and colleagues (2005) ech-

oed similar findings: PBL helped develop better conceptual

understanding of the underlying principles of the domain

and how these principles link the concepts. Even more

interesting, their analysis suggested that “the better the

PRODUCTIVE FAILURE 293

D
ow

nl
oa

de
d 

by
 [

20
7.

24
1.

22
9.

24
3]

 a
t 1

8:
33

 0
4 

N
ov

em
be

r 
20

17
 



capacity of an instrument for evaluating the application of

knowledge by the student, the larger the ascertained effect

of PBL” (p. 45). Finally, in the most recent meta-analyses

of 270 comparisons, H. G. Schmidt, van der Molen, te Win-

kel, and Wijnen (2009) found small but positive effects on

medical knowledge and diagnostic reasoning, and much

stronger effects on medical skills in favor of PBL.

It is important to note that almost all the studies included

in the aforementioned meta-analyses involved medical stu-

dents, which limits the scope of generalization to other

domains and age groups. Therefore, it is worthwhile exam-

ining the effectiveness of PBL beyond medical education,

both in the schools and higher education contexts. For

example, in a longitudinal quasi-experimental study with

preservice teachers, Derry, Hmelo-Silver, Nagarajan, Cher-

nobilsky, and Beitzel (2006) demonstrated consistently bet-

ter transfer effects in favor of PBL over traditional

instruction. In a well-controlled experimental study, Capon

and Kuhn (2004) found that adult MBA students who

engaged in PBL followed by a lecture on the targeted con-

cepts demonstrated greater conceptual understanding of the

targeted concepts than those who received a lecture first fol-

lowed by PBL. There were no significant effects on declara-

tive knowledge. Similar results were obtained by Kuhn and

Dean (2005).

In school contexts, perhaps the most convincing piece of

evidence for PBL comes from a large-scale study on

anchored instruction—a type of PBL—by the Cognition and

Technology Group at Vanderbilt (1992). Conducted in mid-

dle-school mathematics classrooms across 11 U.S. states,

PBL students showed significantly better performance on

standardized tests as well as transfer problems than their

matched comparison counterparts. Further evidence from a

multischool study of PBL in high school contexts comes

from a study by Mergendoller, Maxwell, and Bellisimo

(2006), who found better knowledge gains for PBL students

than their counterparts in traditional direct instruction.

Overall, the pattern of effects seems consistent. Com-

pared to traditional direct instruction, PBL may have a null

or an even negative effect on the acquisition of basic

knowledge but a positive effect on conceptual understand-

ing and transfer. This body of evidence suggests that is pos-

sible to design instruction centered on problem-solving

activities, and then supporting and guiding these activities

in ways that lead to successful problem-solving and learn-

ing—in other words, productive success.

Taken together, the preceding analysis of productive

failure and productive success counters the fallacious infer-

ences outlined earlier. At the same time, it also raises two

important questions:

1. Which is more effective for learning: productive fail-

ure or productive success?

2. Could direct instruction be a form of unproductive

success?

Which is more effective for learning: productive failure

or productive success?

Even though both productive failure and productive suc-

cess can lead to productive learning outcomes, it is not clear

if one is better than the other. How does productive failure

fare against productive success? Answering this question

would help us understand if and the extent to which prob-

lem-solving failure (or success) is a necessary condition for

learning.

Ideally, a clean experimental comparison would entail

comparing problem solving that initially leads to failure fol-

lowed by instruction with problem solving that leads to suc-

cess followed by the same instruction. However, to my

knowledge, no such experimental comparison exists. That

said, a couple of studies that do come close to affording

such a comparison are studies by Schwartz, Chase,

Oppezzo, and Chin (2011) and DeCaro and Rittle Johnson

(2012) described earlier. In both the studies, there was a

nontrivial proportion of students who achieved problem-

solving success initially. However, neither study provides a

breakdown of results comparing students who achieved

problem-solving success with those who did not. Thus, the

question remains an open one.

Another way to answer the question would be by scaf-

folding productive failure students in their initial problem

solving to guide them toward a correct solution, much like

one would do in productive success. Then on could com-

pare them with the regular productive failure students who

are unguided in their initial problem-solving activity.

Kapur (2011) addressed precisely this question in a

quasi-experimental study where students were assigned to

either productive failure or direct instruction conditions, or

a third condition called the guided problem-solving condi-

tion. Whereas students in the productive failure condition

did not receive any form of guidance or support during the

problem-solving phase, students in the guided condition

were provided with cognitive support and facilitation

throughout that process. Such guidance was typically in the

form of teacher clarifications, focusing attention on signifi-

cant issues or parameters in the problem, question prompts

that engendered student elaboration and explanations, and

hints toward productive solution steps (Puntambekar &

H€ubscher, 2005). Findings suggested that the guidance did

in fact result in problem-solving success, whereas none of

the productive failure students were able to generate the

correct solution. However, on the posttest after instruction,

students from the productive failure condition outper-

formed those from both the direct instruction and guided-

generation conditions on procedural knowledge, conceptual

understanding, and transfer. The differences between

guided-generation and direct instruction conditions were

not significant.

Loibl and Rummel (2013) independently replicated this

effect in a study with three similar conditions: unguided

problem solving prior to instruction, guided problem
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solving prior to instruction in which students were sup-

ported with cognitive prompts during the problem-solving

phase, and direct instruction. They found that, in spite of

guidance helping students generate better quality solutions,

there was no significant difference between the guided and

unguided problem-solving conditions on procedural or con-

ceptual understanding. That is, cognitive guidance during

the initial problem-solving phase did not result in better

learning on the posttest.

Both studies (Kapur, 2011; Loibl & Rummel, 2013) sug-

gest that although guidance in the initial problem solving

may well lead to problem-solving success or better quality

of solutions, this better performance does not translate to

better learning from the subsequent instruction. A plausible

reason could be that both low- and high-quality solutions

present opportunities to learn during the subsequent instruc-

tion, especially through a comparison and contrast between

the student-generated solutions and the canonical solution.

Another reason could be that problem-solving success does

not guarantee that students understand how and why the

solution works. Thus, guiding initial problem solving may

not add to the preparatory benefits of problem solving.

This of course implies not that all guidance is unneces-

sary but that more research is needed to understand the

types of guidance is necessary to support the initial problem

solving. Therefore, the question of choosing between pro-

ductive failure and productive success remains an open

one, and one that future work do well to look into, for it

would help unpack the boundary conditions of learning

from failure (or success) in the initial problem solving.

COULD DIRECT INSTRUCTION BE A FORM
OF UNPRODUCTIVE SUCCESS?

One one hand, given direct instruction’s consistently supe-

rior performance against discovery learning, it would be

rather harsh to categorize it as an unproductive success. On

the other hand, as the preceding analyses showed, direct

instruction was found wanting against productive failure

and productive success. Also noted was the pattern of

underperformance of direct instruction, which was not so

much in terms of the acquisition of basic knowledge but

more on conceptual understanding and transfer.

Add to this evidence the longer term adverse effects of

direct instruction. Recall that a striking finding from Dochy,

Segers, Van den Bossche, and Gijbels’s (2003) meta-analy-

sis on PBL was that the advantage of traditional direct

instruction on medical students’ basic knowledge acquisi-

tion disappeared after the 2nd year of college. In other

words, even the positive effect of direct instruction on basic

knowledge acquisition tended to vanish in the longer term.

This finding was not limited to just Dochy et al.’s meta-

analysis. In a synthesis of eight major meta-analyses of

PBL since 1992, Strobel and van Barneveld (2009)

concluded that even though PBL could result in slight

underperformance on standardized tests of basic knowledge

in the shorter term, it was more effective when it came to

long-term retention and performance improvement.

There is further strong experimental evidence suggesting

that direct instruction does not fare well over the longer

term. For example, Dean and Kuhn (2006) replicated Klahr

and Nigam’s (2004) study on the learning of CVS, but with

one exception. Instead of a short-term study involving one

session of instruction and problem solving, Dean and Kuhn

carried out a 10-week study to compare the relative effects

of direct instruction alone, direct instruction followed by

problem solving, and problem solving alone. They found

that direct instruction was “neither a necessary nor suffi-

cient condition for robust acquisition or for maintenance

over time” (p. 384)—a conclusion that is consistent with

the other longer term PBL studies, not only with medical

students (e.g., Hmelo, 1998) but also with school students

(e.g., Cognition and Technology Group at Vanderbilt,

1992) and nonmedical, higher education students (e.g.,

Derry et al., 2006).

Finally, consider emerging evidence that direct instruc-

tion may actually constrain search for novel solutions,

which is a necessary component of inventiveness and crea-

tivity. Kapur (2014) found that, whereas productive stu-

dents were able to design five to six solutions before

receiving instruction on the targeted concepts, their direct

instruction counterparts tended to produce only the correct

solution when given the same problem to solve after

instruction on the targeted concepts. This seems to suggest

that although instruction may guide students to produce

correct solutions, it may also create a lock-in and constrain

search for new solutions. Kapur’s findings are consistent

with the work of Bonawitz et al. (2011), who demonstrated

a similar effect on children playing with toys with versus

without guidance from adults. Bonawitz et al. (2011)

advanced the explanation that students tended to infer from

instruction by a knowledgeable adult that all the relevant

knowledge and procedures that they need to learn had

already been taught during instruction. Such an inference,

on one hand, increases the likelihood producing correct sol-

utions but, on the other hand, comes at the expense of limit-

ing exploration and search for new solutions.

What might explain the underperformance of direct

instruction? The answer, in part, may simply lie in what the

cognitive sciences have well-established and known for a

very long time: Experts notice different things from novi-

ces. Experts tend to notice the deep structure and critical

features of the domain, whereas novices attend more to the

superficial features (Chase & Simon 1973; Chi, Glaser, &

Farr, 1988; De Groot, 1965). It follows, then, that in starting

with direct instruction, one makes the assumption that novi-

ces are prepared to notice the critical features and deep

structure of the domain—an assumption that, by the very

definition of a novice, is not tenable. Schwartz and
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colleagues (Schwartz & Bransford, 1998; Schwartz, Chase,

Oppezzo, & Chin, 2011; Schwartz & Martin, 2004) have

demonstrated that novices do not have the necessary prior

knowledge differentiation to be able to notice and encode

critical features of domain knowledge during direct

instruction.

Even though direct instruction may reduce cognitive

load, the benefit of a reduced cognitive of load maybe offset

by the lower likelihood of novices to notice and conse-

quently encode critical features and deep structure of the

domain. Put more strongly, a reduced cognitive load may in

fact be counterproductive if it allows for the noticing and

encoding of features that are not critical. It is really the

noticing and encoding of deep structure and critical features

that makes for conceptual understanding and transfer

(Bassok, 1996; Belenky & Schalk, 2014; Braithwate &

Goldstone, 2015; Kaminski, Sloutsky, & Heckler, 2008,

2013).

Therefore, if the goals of learning are largely the acquisi-

tion of basic knowledge for problem solving without a com-

mensurate understanding the concepts, let alone being able

to transfer them, then direct instruction does a fairly good

job. However, even this conclusion may be overly generous

in the light of the longer term comparisons. Instead, if one

views the acquisition of basic knowledge without deep

understanding or transfer as a problem, then it is not as

harsh to categorize direct instruction as an unproductive

success relative to productive failure and productive suc-

cess. It is important to emphasize the relative nature of the

categorization; what seems productive success against one

thing can seem unproductive success against another.

DISCUSSION

In this article, I interrogated the four design possibilities—

unproductive failure, unproductive success, productive fail-

ure, and productive success—arising from an incommensu-

rability between performance and learning. By examining

direct instruction’s CLT-grounded case against discovery

learning, I argued that even though direct instruction may

come across as an example of productive success in com-

parison with discovery learning, it could be seen as an

unproductive success compared with examples of produc-

tive failure and productive success.

Several implications follow.

It is quite clear that the extremes are not very useful and

that we need to abandon the dichotomy between unguided

problem solving and heavily guided direct instruction.

There is a large design space in between the two extremes

that can be exploited to achieve optimal learning. Produc-

tive failure provides an example of how this design space

can be exploited to combine the exploratory benefits of

unguided problem solving and explicit instruction (Kapur

& Rummel, 2012). Likewise, productive success provides

an example of how students tend to learn better when their

learning is situated in problems and are appropriately scaf-

folded during their problem solving to bring about both suc-

cessful problem solving and learning (Hmelo-Silver,

Duncan, & Chinn, 2007).

Furthermore, what counts as learning depends upon

the context and the kinds of learning goals one commits

to (Kuhn, 2007). CLT defines learning as schema acqui-

sition resulting in a change in the long-term memory

(Kirschner, Sweller, & Clark, 2006). Clearly, the defini-

tion is limited. There is more to learning than schema

acquisition alone. Problem solving, inquiry, argumenta-

tion, reasoning, inventing, metacognition and self-regu-

lation, epistemic fluency and flexibility, adaptiveness,

collaboration, knowledge building, learning to learn, and

so on, are all equally if not even more important goals

of learning (Bereiter & Scardamalia, 2006). Therefore,

the choice of instructional method needs to take into

account the various types of learning goals. Conversely,

instructional design prescriptions derived from a narrow

definition of learning cannot be applicable more gener-

ally (Kuhn, 2007).

And this brings us nicely to the next point.

CLT needs a rethink of some its basic assumptions,

without necessarily throwing out the proverbial baby with

the bathwater. I focus on two assumptions: (a) cognitive

load is the main mechanism of learning, and (b) higher cog-

nitive load is monotonically bad for learning. Both assump-

tions are questionable. Cognitive load is but one

mechanism. We also need to take into account other cogni-

tive (e.g., attention, activation, noticing, etc.), social (e.g.,

collaboration, conflict, explanation and elaboration, etc.),

and cultural (e.g., norms, values) mechanisms when design-

ing for learning. Again, the choice of mechanisms embod-

ied in a design would depend upon the learning goals.

It may also not always be true that the higher the cogni-

tive load, the worse the learning. A higher cognitive load at

times may in fact be good for driving attention and activat-

ing prior knowledge, which may in turn help students notice

and learn better from instruction. There is evidence from

research on productive failure suggesting that the initial

problem-solving phase engenders a higher cognitive load

(Kapur, 2012, 2014). Yet, as the findings described earlier

show, it also leads to better learning from subsequent

instruction. In other words, contrary to the predictions of

CLT, cognitive load may not always be monotonically bad

for learning. A certain amount of load, even high load, can

be productive for learning.

Taking the variety in the types of learning goals in

account together with a questioning of some of the basic

assumptions of CLT will result only in a rethinking of its

scope of applicability. The rethinking process has already

started from within the CLT community. Kalyuga and

Singh (2015) called for a reconsideration of the scope of

applicability of CLT. Specifically, they argued that CLT
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has largely been concerned with the instructional goal of

schema acquisition of basic knowledge. This, they argued,

may limit the instructional recommendations arising out of

CLT to context where the instructional goal is just that, and

not extend to contexts where the goals that go beyond

acquisition of basic knowledge schemas, such as in com-

plex problem-based learning environments.

Finally, stepping into the long-standing instructivist–

constructivist debate (Kirschner, Sweller, & Clark, 2006;

Tobias & Duffy, 2009), it is perhaps worth clarifying that a

commitment to a constructivist epistemology does not nec-

essarily imply a commitment to discovery learning (Kapur,

2015). Instead, it requires a commitment to building upon

learners’ prior knowledge. However, one cannot build upon

prior knowledge if one does not know what that prior

knowledge is in the first place. Finding out what a learner

knows and how that knowledge can be used to help them

learn new concepts is central to the concept of scaffolding

(Pea, 2004). Because CLT argues for heavy scaffolding

right from the start, it may be worthwhile to briefly revisit

the concept of scaffolding.

Scaffolding theory argues for guidance to be minimal

and provided only after the learner has first been given

opportunities to persist in solving a problem or a task

(Wood, Bruner, & Ross, 1976). It is not surprising, then,

that the notion of scaffolding originally conceived by

Wood, Bruner, and Ross (1976) was eventually linked to

the Vygotskian notion of the zone of proximal development

(ZPD; Bruner, 1986; Vygotsky, 1978). The ZPD is defined

as the “distance between the child’s actual developmental

level as determined by independent problem solving and

the higher level of potential development as determined

through problem solving under adult guidance and in col-

laboration with more capable peers” (Vygotsky, 1978,

p. 86). Enabling the learner to bridge this gap requires the

provision of support structures, which need not necessarily

be in the form of a more capable person (e.g., a teacher,

expert) but may also include tools, instructional facilitation,

and so on (Puntambekar & Hubscher, 2005).

In both scaffolding theory and Vygotskian ZPD, one

must first ascertain the limits of what learners can achieve

on their own (Bruner, 1986). But it is not possible to ascer-

tain the limits of what learners can achieve on their own

without concomitantly ascertaining what it is that they can-

not. Ascertaining the latter would invariably entail learners

failing to solve problems or complete tasks on their own.

An analysis of this failure would then provide critical infor-

mation for an expert to design and administer appropriate

scaffolds (Pea, 2004).

Given the centrality of scaffolding in designing for pro-

ductive success, and that scaffolding, as argued earlier, nec-

essarily entails a determination of what a learner is not able

to accomplish on his or her own, it logically follows that

productive success could well be conceived as a design that

embodies iterative cycles of productive failure.

In the final analysis, therefore, whether one makes com-

mitment to the instructivist or the constructivist camp, the

primacy of what a learner already knows seems to be com-

mon and important to both. A direct implication for the

design of instruction is to first understand the nature and

limits of learners’ prior knowledge, before designing appro-

priate guidance to build upon it. Part of the problem with

CLT, as argued earlier, is that the first part of the aforemen-

tioned implication is ignored or assumed to be null. In con-

trast, productive failure presents a way of first engaging

students in unguided problem solving to elicit what students

know, especially in the failure to solve the problem, and

then using this information to consolidate and assemble

new knowledge.
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